The Risk GP Model: the standard model of prediction in medicine.

نویسندگان

  • Jonathan Fuller
  • Luis J Flores
چکیده

With the ascent of modern epidemiology in the Twentieth Century came a new standard model of prediction in public health and clinical medicine. In this article, we describe the structure of the model. The standard model uses epidemiological measures-most commonly, risk measures-to predict outcomes (prognosis) and effect sizes (treatment) in a patient population that can then be transformed into probabilities for individual patients. In the first step, a risk measure in a study population is generalized or extrapolated to a target population. In the second step, the risk measure is particularized or transformed to yield probabilistic information relevant to a patient from the target population. Hence, we call the approach the Risk Generalization-Particularization (Risk GP) Model. There are serious problems at both stages, especially with the extent to which the required assumptions will hold and the extent to which we have evidence for the assumptions. Given that there are other models of prediction that use different assumptions, we should not inflexibly commit ourselves to one standard model. Instead, model pluralism should be standard in medical prediction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Genetic Programming to Modeling and Prediction of Activity Coefficient Ratio of Electrolytes in Aqueous Electrolyte Solution Containing Amino Acids

Genetic programming (GP) is one of the computer algorithms in the family of evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. In this paper the systems containing amino ac...

متن کامل

Prediction of groundwater level Sharif Abad catchment of Qom using WANN and GP models

In this study is predicted the groundwater level of Sharif Abad catchment using some artificial intelligence models. For this purpose used of monthly groundwater levels for modeling in the three observed wells located in the Sharif Abad watershed of Qom. To compare the results of the hybrid model of wavelet analysis-neural network (WNN), genetic programming (GP) multiple linear regression (MLR)...

متن کامل

GENETIC PROGRAMMING AND MULTIVARIATE ADAPTIVE REGRESION SPLINES FOR PRIDICTION OF BRIDGE RISKS AND COMPARISION OF PERFORMANCES

In this paper, two different data driven models, genetic programming (GP) and multivariate adoptive regression splines (MARS), have been adopted to create the models for prediction of bridge risk score. Input parameters of bridge risks consists of safe risk rating (SRR), functional risk rating (FRR), sustainability risk rating (SUR), environmental risk rating (ERR) and target output. The total ...

متن کامل

Bankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach

 In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...

متن کامل

The Prediction Model for Bankruptcy Risk by Bayesian Method

The importance of predicting bankruptcy risk of firms is increasing because of later financial crisis. Despite practical researchers trying to present models for predicting this risk, it seems that an optimum and acceptable model that is reliable for financial statement users and auditors in order to increase their ability in decision making and professional judgment has not been presented yet....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Studies in history and philosophy of biological and biomedical sciences

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2015